Asked by Jay
                Let V be the volume of a right circular cone having height h and radius r and assume that h and r vary with time.
a. Express the time rate of change of the cylinder in terms of h, r and their rates of change.
b. At a certain instant, the height is 10 in and decreasing at a rate of 1.5 in/sec, while the
radius is 3 in and increasing at a rate of 2 in/sec. How fast is the volume changing at
that instant and state whether the volume is decreasing or increasing.
            
        a. Express the time rate of change of the cylinder in terms of h, r and their rates of change.
b. At a certain instant, the height is 10 in and decreasing at a rate of 1.5 in/sec, while the
radius is 3 in and increasing at a rate of 2 in/sec. How fast is the volume changing at
that instant and state whether the volume is decreasing or increasing.
Answers
                    Answered by
            MathMate
            
    V is a function of r(t) and h(t)
so use the product rule and chain rule:
 
V(t)=(1/3)πr(t)²h(t)
V'(t)=(1/3)π[2r*r'(t)]h(t)+(1/3)πr(t)²h'(t)
Can you take it from here?
    
so use the product rule and chain rule:
V(t)=(1/3)πr(t)²h(t)
V'(t)=(1/3)π[2r*r'(t)]h(t)+(1/3)πr(t)²h'(t)
Can you take it from here?
                                                    There are no AI answers yet. The ability to request AI answers is coming soon!
                                            
                Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.