Asked by delwin
Find the radius of a circle on which a central angle of 3 pie over 2 radians subtends an arc of 60 ft.
Answers
Answered by
Jai
First note that a whole circle measures 360 degrees or 2pi radians. The 3/2pi radians is just 3/4 of 2pi, Thus we can say that the length of arc given (the 60 ft) is just 3/4 of the circumference of the circle.
If 60 is just 3/4 of the whole, then 60/(3/4) = 80 ft is the circumference of the circle.
Recall that the circumference of circle is given by
C = 2*pi*r
where r = radius
Substituting,
80 = 2*pi*r
r = 80/(2*pi)
r = 40/pi = 12.74 ft
hope this helps~ :)
If 60 is just 3/4 of the whole, then 60/(3/4) = 80 ft is the circumference of the circle.
Recall that the circumference of circle is given by
C = 2*pi*r
where r = radius
Substituting,
80 = 2*pi*r
r = 80/(2*pi)
r = 40/pi = 12.74 ft
hope this helps~ :)
Answered by
Bosnian
If a central angle theta = 3 pi / 2 then :
Circumference of a circle = 2 * r * pi
Ful circle have 360 ° = 2 pi radians.
Lenght of arc :
L = ( theta / 2 pi ) * 2 * r * pi
L = theta * r = 60
( 3 pi / 2 ) * r = 60 Multiply both sides by 2
3 pi * r = 120 Divide both sides by 3 pi
r = 120 / 3 pi = 40 / pi
Circumference of a circle = 2 * r * pi
Ful circle have 360 ° = 2 pi radians.
Lenght of arc :
L = ( theta / 2 pi ) * 2 * r * pi
L = theta * r = 60
( 3 pi / 2 ) * r = 60 Multiply both sides by 2
3 pi * r = 120 Divide both sides by 3 pi
r = 120 / 3 pi = 40 / pi
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.