Asked by Abhi
A balloon in the form of a right cone surmiunted by a hemispere,having a diameter equal to height of the cone,is being inflated.how fast is its volume changing w.r.t its total height 'h' when h
Answers
Answered by
Damon
I assume that h is the height of the cone from the floor to the base of the hemisphere. Thus the diameter of the cone at the floor is 2 h and the height of the cone if it went to the tip would be 2 h
volume of cone of base diameter 2 h and height 2 h:
(1/3)(2h)(pi/4)(4 h^2)= (2/3)pi h^3
volume of cut off tip of cone:
(1/3)(h)(pi/4)h^2 = (1/12) pi h^3
so
volume of cone base = (7/12)pi h^3
now
volume of hemisphere = (1/2)(4/3)pi(h/2)^3 = pi h^3/12
so
total balloon volume = (2/3) pi h^3
dV/dh = 2 pi h^2
dV/dt = dV/dh * dh/dt
so
dV/dt = 2 pi h^2 dh/dt
volume of cone of base diameter 2 h and height 2 h:
(1/3)(2h)(pi/4)(4 h^2)= (2/3)pi h^3
volume of cut off tip of cone:
(1/3)(h)(pi/4)h^2 = (1/12) pi h^3
so
volume of cone base = (7/12)pi h^3
now
volume of hemisphere = (1/2)(4/3)pi(h/2)^3 = pi h^3/12
so
total balloon volume = (2/3) pi h^3
dV/dh = 2 pi h^2
dV/dt = dV/dh * dh/dt
so
dV/dt = 2 pi h^2 dh/dt
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.