Asked by John
Often in personal finance we want to know what our $1 investment today will be worth in 20 years. In business however, there is more concern with answering the question, “If I receive $100 in 5 years, what is that worth today?” To answer this question, modify the formula fv = pv*((1+i)^n) and use the reciprocal. Simply stated, the reciprocal of a number is 1 divided by the number; the reciprocal of 10, for example, is 1/10. In the formula above, we divide both sides by ((1+i)^n), which creates a new formula where the fv is multiplied by the reciprocal of the original: fv*(1/((1+i)^n))=pv. Select an interest rate and number of periods—be sure your numbers are different from other students who already answered this question—to calculate the present value of $100 received in the future. What would the value of $100 in the future be today given the interest rate and number of periods you selected?
Answers
Answered by
Henry
V = Vp(1+r)^n. APR = 10%.
r = (10%/12) / 100% = 0.00833=Monthly %
rate expressed as a decimal.
n = 1Comp./mo * 60mo = 60 Compounding
periods.
V = Vp(1.00833)^60 = $100
Vp = 100 / (1.00833)^60 = $60.77.
r = (10%/12) / 100% = 0.00833=Monthly %
rate expressed as a decimal.
n = 1Comp./mo * 60mo = 60 Compounding
periods.
V = Vp(1.00833)^60 = $100
Vp = 100 / (1.00833)^60 = $60.77.
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.