Asked by alandra
M and N are the midpoints of the sides of a square. What is the ratio of the area of triangle AMN to the area of the complete square? But the answer has to be in a ratio which is the area of a triangle to the area of the complete square. Also the triangle is in the square at top corner.
Answers
Answered by
Jai
Let x = length of side of square
thus area of square is
A,square = x^2
recall that area of triangle is given by
A,triangle = (1/2)b*h
where b is the base and h is the height.
The base and height of the triangle AMN are equal, which is (1/2)x. Thus,
A,triangle = (1/2)*[(1/2)x]*[(1/2)x]
A,triangle = (1/8)x^2
Getting the ratio of areas,
A,triangle : A,square = (1/8)x^2 : x^2 = 1/8
hope this helps~ :)
thus area of square is
A,square = x^2
recall that area of triangle is given by
A,triangle = (1/2)b*h
where b is the base and h is the height.
The base and height of the triangle AMN are equal, which is (1/2)x. Thus,
A,triangle = (1/2)*[(1/2)x]*[(1/2)x]
A,triangle = (1/8)x^2
Getting the ratio of areas,
A,triangle : A,square = (1/8)x^2 : x^2 = 1/8
hope this helps~ :)
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.