Duplicate Question
The question on this page has been marked as a duplicate question.
Original Question
An electron of mass 9.1E-31 kg is released from rest at a distance of 7.1 E-10 m from a fixed electron. The force on the movabl...Asked by andrew
An electron of mass 9.1E-31 kg is released from rest at a distance of 7.1 E-10 m from a fixed electron. The force on the movable electron is given by the function F = 2.3E-28/r^2, where r is the distance between the electrons. Find the maximum velocity (in meters/second) of the moving electron after release.
^ we're supposed to use mechanical energy theorems to solve this problem.
Ive tried integrating the F(x) to find the total work, but our teacher didn't specify the distance the object travels, so its impossible to bound the integral.
Ideas?
Solutions? thanks!
^ we're supposed to use mechanical energy theorems to solve this problem.
Ive tried integrating the F(x) to find the total work, but our teacher didn't specify the distance the object travels, so its impossible to bound the integral.
Ideas?
Solutions? thanks!
Answers
Answered by
drwls
integrate the repulsion force from the initial separation to infinity and you will get a finite energy change. Set that equal to the final maximum kinetic energy.
Answered by
Yan
integrate with lower bound is 7.1 E-10
and upper bound is infinity.
Then use lim as Rmax approaches infinity, replace upper bound.
Then find velocity by:
Work = (1/2) * m * v^2
v^2 = 2 * Work / m
v = sqrt( 2 * Work / m ).
Answer for this problem: 843780
and upper bound is infinity.
Then use lim as Rmax approaches infinity, replace upper bound.
Then find velocity by:
Work = (1/2) * m * v^2
v^2 = 2 * Work / m
v = sqrt( 2 * Work / m ).
Answer for this problem: 843780
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.