Asked by sarah
how would you do this improper integral
1/(x-1)
from 0 to 2
this is improper at one, so I split it up into two integrals
ln(x-1) from 0-1 and
ln(x-1) from 1-2
I then did for the first one the (lim t->1(-) of ln(t-1))-(ln(0-1))
and then the same thing for the second part
I didn't know if this was right though, or what the answer would be
1/(x-1)
from 0 to 2
this is improper at one, so I split it up into two integrals
ln(x-1) from 0-1 and
ln(x-1) from 1-2
I then did for the first one the (lim t->1(-) of ln(t-1))-(ln(0-1))
and then the same thing for the second part
I didn't know if this was right though, or what the answer would be
Answers
Answered by
drwls
You used a correct procedure, but both integrals you broke it up into involve the log of zero or a negative number, both of which are "improper". I don't see how one can get a finite integral this way.
Here is another way that might work:
Define the integral of the sum of two limits. One is the integral from 0 to 1-a and the other is the integral from 1+a to 2, as value of a goes to zero. Consider a as always positive. You may find that two two terms always cancel each other whatever a is, so that the limit will be zero.
Here is another way that might work:
Define the integral of the sum of two limits. One is the integral from 0 to 1-a and the other is the integral from 1+a to 2, as value of a goes to zero. Consider a as always positive. You may find that two two terms always cancel each other whatever a is, so that the limit will be zero.
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.