Duplicate Question
The question on this page has been marked as a duplicate question.
Original Question
Complete parts a – c for each quadratic function. a. Find the y-intercept, the equation of the axis of symmetry and the x-coord...Asked by Mara
Complete parts a – c for each quadratic function:
a. Find the y-intercept, the equation of the axis of symmetry and the x-
coordinate of the vertex.
b. Make a table of values that
includes the vertex.
c. Use this information to graph the
function.
1. f(x) = 2x^2
2. f(x) = x^2 + 4
3. f(x) = 2x^2 – 4
4. f(x) = x^2 – 4x + 4
5. f(x) = x^2 – 4x – 5
6. f(x) = 3x^2 + 6x – 1
7. f(x) = -3x^2 – 4x
8. f(x) = 0.5x^2 – 1
9. f(x) = ½x^2 + 3x + 9/2
Determine whether each function has a maximum or a minimum value. Then find the maximum or minimum value of each function:
10. f(x) = 3x^2
11. f(x) = x^2 – 8x + 2
12. f(x) = 4x – x^2 + 1
13. f(x) = 2x + 2x^2 + 5
14. f(x) = -7 – 3x^2 + 12x
15. f(x) = -½x^2 – 2x + 3
Thank You!!
a. Find the y-intercept, the equation of the axis of symmetry and the x-
coordinate of the vertex.
b. Make a table of values that
includes the vertex.
c. Use this information to graph the
function.
1. f(x) = 2x^2
2. f(x) = x^2 + 4
3. f(x) = 2x^2 – 4
4. f(x) = x^2 – 4x + 4
5. f(x) = x^2 – 4x – 5
6. f(x) = 3x^2 + 6x – 1
7. f(x) = -3x^2 – 4x
8. f(x) = 0.5x^2 – 1
9. f(x) = ½x^2 + 3x + 9/2
Determine whether each function has a maximum or a minimum value. Then find the maximum or minimum value of each function:
10. f(x) = 3x^2
11. f(x) = x^2 – 8x + 2
12. f(x) = 4x – x^2 + 1
13. f(x) = 2x + 2x^2 + 5
14. f(x) = -7 – 3x^2 + 12x
15. f(x) = -½x^2 – 2x + 3
Thank You!!
Answers
Answered by
bobpursley
So what is your question?
This would be a piece of cake on a graphing calculator.
This would be a piece of cake on a graphing calculator.
Answered by
Mara
Thanks I didn't even think of that! I am however stuck on these problems, i know theres a lot though, any help would be great, but i can't seem to understand the complex numbers, thankyou!
Simplify:
1.SquareRoot(-144)
2.SquareRoot(-64x^4)
3.SquareRoot(-13)*SquareRoot(-26)
4.(-2i)(-6i)(4i)
5. i^13
6. i3^8
7.(5 – 2i) + (4 + 4i)
8.(3 – 4i) – (1 – 4i)
9.(3 + 4i)(3 – 4i)
10.(6 – 2i)(1 + i)
11. (4i)/(3+i)
12. (10+i)/(4-i)
13. (-5 + 2i)(6 – i)(4 + 3i)
14. (5-iSquareRoot(3))/(5-iSquareRoot(3))
15. Find the sum of ix2 – (2 + 3i)x + 2 and 4x2 + (5 + 2i)x – 4i.
Solve each equation:
16. 5x^2 + 5 = 0
17. 2x^2 + 12 = 0
18. -3x^2 – 9 = 0
19. (2/3)x^2 + 30 = 0
Find the values of m and n that make each equation true:
20. 8 + 15i = 2m + 3ni
21. (2m + 5) + (1 – n)i = -2 + 4i
22. (m + 2n) + (2m – n)i = 5 + 5i
Simplify:
1.SquareRoot(-144)
2.SquareRoot(-64x^4)
3.SquareRoot(-13)*SquareRoot(-26)
4.(-2i)(-6i)(4i)
5. i^13
6. i3^8
7.(5 – 2i) + (4 + 4i)
8.(3 – 4i) – (1 – 4i)
9.(3 + 4i)(3 – 4i)
10.(6 – 2i)(1 + i)
11. (4i)/(3+i)
12. (10+i)/(4-i)
13. (-5 + 2i)(6 – i)(4 + 3i)
14. (5-iSquareRoot(3))/(5-iSquareRoot(3))
15. Find the sum of ix2 – (2 + 3i)x + 2 and 4x2 + (5 + 2i)x – 4i.
Solve each equation:
16. 5x^2 + 5 = 0
17. 2x^2 + 12 = 0
18. -3x^2 – 9 = 0
19. (2/3)x^2 + 30 = 0
Find the values of m and n that make each equation true:
20. 8 + 15i = 2m + 3ni
21. (2m + 5) + (1 – n)i = -2 + 4i
22. (m + 2n) + (2m – n)i = 5 + 5i
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.