Asked by jenna
A farmer wants to fence in 60 000m^2 of land in a rectangular field along a straight road. The fencing that he plans to use along the road is $10 per meter and the fencing that he plans to use for the other three sides costs $5 per meter.
a) How much of each type of fence should he buy to keep his expanses to a minimum?
b) What is the minimum expanse?
a) How much of each type of fence should he buy to keep his expanses to a minimum?
b) What is the minimum expanse?
Answers
Answered by
Reiny
width of field --- x
length of field --- y , with y as the distance along the road
xy = 60000
y = 60000/x
cost = 5(2x+y) + 10y
= 10x = 15y
= 10x + 15(60000/x)
= 10x + 900000/x
d(cost)/dx = 10 - 900000/x^2 = 0 for a min of cost
10x^2 = 900000
x^2 = 90000
x = √90000 = 300
then y = 60000/300 = 200
so the field should be 200 m by 300 m , with the 200 metres along the road
minimum expense = 10x+ 15y = 3000 + 3000 = $6000
length of field --- y , with y as the distance along the road
xy = 60000
y = 60000/x
cost = 5(2x+y) + 10y
= 10x = 15y
= 10x + 15(60000/x)
= 10x + 900000/x
d(cost)/dx = 10 - 900000/x^2 = 0 for a min of cost
10x^2 = 900000
x^2 = 90000
x = √90000 = 300
then y = 60000/300 = 200
so the field should be 200 m by 300 m , with the 200 metres along the road
minimum expense = 10x+ 15y = 3000 + 3000 = $6000
Answered by
Anonymous
There were 27 students who completed a survey. There were 14 boys and 13 girls. One survey was picked at random. To the nearest hundredth, what is the probability it was completed by a girl?
Answered by
kathy
13/27
Answered by
gina
read3books4minits. Idonotnoaboutfillchrips.butmabesomere
time.readyourbooks
time.readyourbooks
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.