Asked by ronnieday
The rate at which an amount of a radioactive substance decays is modeled by the differential equation dA/dt = kA, where A is the mass in grams, t is the time in years, and k is a constant. Answer the following.
a) If a 100-gram sample of the radioactive substance decays to 95 grams after 1 year, find an equation that can model the mass of the of the sample after t years.
b) Find the mass of the sample after 50 years.
c) The half-life of a substance is the amount of time it takes for a sample to decay to half its original size. Find the half-life of the radioactive substance.
a) If a 100-gram sample of the radioactive substance decays to 95 grams after 1 year, find an equation that can model the mass of the of the sample after t years.
b) Find the mass of the sample after 50 years.
c) The half-life of a substance is the amount of time it takes for a sample to decay to half its original size. Find the half-life of the radioactive substance.
Answers
Answered by
Reiny
let the equation be
A = 100 e^(kt)
a) if amount = 95
95 = 100 e^(1k)
.95 = e^k
k = ln .95
so A = 100 e^(ln.95 t)
when t = 50
A = 100 e^(50ln.95) = 7.69 g are left
for half-life time, only 50 g of the original 100g would remain
50 = 100 e^(ln.95 t)
.5 = e^(ln.95 t)
ln.95t = ln.5
t = ln.5/ln.95 = appr13.5 years
A = 100 e^(kt)
a) if amount = 95
95 = 100 e^(1k)
.95 = e^k
k = ln .95
so A = 100 e^(ln.95 t)
when t = 50
A = 100 e^(50ln.95) = 7.69 g are left
for half-life time, only 50 g of the original 100g would remain
50 = 100 e^(ln.95 t)
.5 = e^(ln.95 t)
ln.95t = ln.5
t = ln.5/ln.95 = appr13.5 years
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.