Asked by help please.
Determine whether the statement is true or false. If it is true, explain why it is true. If it is false, give an example to show why it is false.
a- if f is a function of x and y and a is a real number, then f(ax, ay)= af(x,y).
b- if fx(a,b) < 0, then f is decreasing with respect to x near (a,b).
a- if f is a function of x and y and a is a real number, then f(ax, ay)= af(x,y).
b- if fx(a,b) < 0, then f is decreasing with respect to x near (a,b).
Answers
Answered by
Steve
(a) is certainly not true in general. While it is true for linear functions, it is otherwise not true.
f(x,y) = x^2/(y^2+1)
f(ax,ay) = (a^2x^2)/(a^y^2+1)
or
f(x,y) = sin(x+y)
f(ax,ay) = sin a(x+y)
or
f(x,y) = e^x * ln(y)
f(ax,ay) = a^ax * ln(ay) = e^a * e^x * (lna + lny)
(b) I assume fx means the partial with respects to x. That's true. The derivative is the slope of the curve in the intersection of f(x,y) and the plane y=b.
f(x,y) = x^2/(y^2+1)
f(ax,ay) = (a^2x^2)/(a^y^2+1)
or
f(x,y) = sin(x+y)
f(ax,ay) = sin a(x+y)
or
f(x,y) = e^x * ln(y)
f(ax,ay) = a^ax * ln(ay) = e^a * e^x * (lna + lny)
(b) I assume fx means the partial with respects to x. That's true. The derivative is the slope of the curve in the intersection of f(x,y) and the plane y=b.
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.