Find dz/dy and dz/dx

Let z = ∫e^(sin(t))dt from x to y

a = x
b = y

I tried thinking about it like a chain rule but even then i'm a little unsure.

I know dz/dt = e^(sin(t)). Can you please point me in the right direction if i'm supposed to use the chain rule.

1 answer

if F = Integral(f(t)) [x,y] then
dF/dx = f(x) = e^sin(x)
dF/dy = -f(y) = -e^sin(y)

wikipedia has a good article on differentiation under the integral
Similar Questions
  1. Given the function: f(x) = x^2 + 1 / x^2 - 9a)find y and x intercepts b) find the first derivative c) find any critical values
    1. answers icon 1 answer
  2. Given the function: f(x) = x^2 + 1 / x^2 - 9a)find y and x intercepts b) find the first derivative c) find any critical values
    1. answers icon 0 answers
  3. Let equation of an hyperbola be y^2-4x^2+4y+24x-41=0a. Find the standard form b. Find the center c. Find the vertices d. Find
    1. answers icon 0 answers
  4. For the following graph:a. Find the domain of f. b. Find the range of f. c. Find the x-intercepts. d. Find the y-intercept. e.
    1. answers icon 1 answer
more similar questions