Asked by Bryant
Let z = ∫(e^sin(t)dt) from x to y
a = x
b = y
I tried thinking about it like a chain rule but even then i'm a little unsure.
I know dz/dt = e^sin(t). Can you please point me in the right direction if i'm supposed to use the chain rule.
a = x
b = y
I tried thinking about it like a chain rule but even then i'm a little unsure.
I know dz/dt = e^sin(t). Can you please point me in the right direction if i'm supposed to use the chain rule.
Answers
Answered by
MathMate
Don't know if you really meant
∫sin(t)e^t dt
If that's the case, try differentiate using the chain rule,
sin(t)e^t
and
cos(t)e^t
You should be able to figure out the integral from the results.
The original integral you posted does not seem to have an analytic solution. A series solution is (almost always) available but does not fit your bill.
∫sin(t)e^t dt
If that's the case, try differentiate using the chain rule,
sin(t)e^t
and
cos(t)e^t
You should be able to figure out the integral from the results.
The original integral you posted does not seem to have an analytic solution. A series solution is (almost always) available but does not fit your bill.
Answered by
Anonymous
uh no i meant what i typed which is e^(sin(t))
Answered by
Steve
In that case, I fear there is no solution using elementary functions.
who posed such a problem? It's solvable numerically, using a Taylor series, but not symbolically.
who posed such a problem? It's solvable numerically, using a Taylor series, but not symbolically.
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.