Asked by John
                Consider the curves y = x^2and y = mx, where m is some positive constant. No matter what positive constant m is, the two curves enclose a region in the first quadrant.Without using a calculator, find the positive constant m such that the area of the region
bounded by the curves y = x^2 and y = mx is equal to 8.
I would very much appreciate it if someone could find the answer and explain how you did it.
            
        bounded by the curves y = x^2 and y = mx is equal to 8.
I would very much appreciate it if someone could find the answer and explain how you did it.
Answers
                    Answered by
            Abby
            
    the anti derivative is (m/2)x^2 - 1/3(x)^3 so if you use the 2nd fundamental theorem of calculus using (mx - x^2) over the interval (0,m) and set that equal to 8 (the interval is 0 to m because the function with the larger area is mx) you should get m^3 / 8 = 8. Solve for m and you're done :)
    
                                                    There are no AI answers yet. The ability to request AI answers is coming soon!
                                            
                Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.