Asked by Becca
Find the volume of the solid formed when the region bounded by y=3x^2 and y=36-x^2 is revolved about the x-axis.
Answers
Answered by
Reiny
I see several posts made by you dealing mainly with these integrations problems, without any indication by you showing any steps or attempts.
I will do this one. Try to follow these steps to solve the others
Make a sketchl
First you need the intersection to see the region that you are revolving.
y = 3x^2 and y = 36-x^2
3x^2 = 36-x^2
4x^2 = 36
x = ± 3
Because of the symmetry, I will boundaries from 0 to 3, then double our volume
in general,
Volume = π∫y^2 dx from left boundary to right boundary
the y , the height or radius of our rotation, is
36-x^2 - 3x^2 = 36-4x^2
V = 2π∫ (36-4x^2)^2 dx from 0 to 3
= 2π∫ (1296 - 288x^2 + 16x^4) dx from 0 to 3
= 2π [ 1296x - 96x^3 + (16/5)x^5] from 0 to 3
= 2π (3888 - 2592 + 3888/5 - 0 - 0 - 0)
= (20736/5)π = appr. 13028.8
I will do this one. Try to follow these steps to solve the others
Make a sketchl
First you need the intersection to see the region that you are revolving.
y = 3x^2 and y = 36-x^2
3x^2 = 36-x^2
4x^2 = 36
x = ± 3
Because of the symmetry, I will boundaries from 0 to 3, then double our volume
in general,
Volume = π∫y^2 dx from left boundary to right boundary
the y , the height or radius of our rotation, is
36-x^2 - 3x^2 = 36-4x^2
V = 2π∫ (36-4x^2)^2 dx from 0 to 3
= 2π∫ (1296 - 288x^2 + 16x^4) dx from 0 to 3
= 2π [ 1296x - 96x^3 + (16/5)x^5] from 0 to 3
= 2π (3888 - 2592 + 3888/5 - 0 - 0 - 0)
= (20736/5)π = appr. 13028.8
Answered by
Becca
I use this to check my answers. I apologize for not realizing that I should have proven to you that I was doing them by myself at first.
Answered by
Reiny
Fair enough.
In that case, you should post the answer you got, that way I can just do some fast scribbling on a piece of scrap paper and either confirm or reject your answer.
It would save us a lot of unnecessary typing of the whole solution.
In that case, you should post the answer you got, that way I can just do some fast scribbling on a piece of scrap paper and either confirm or reject your answer.
It would save us a lot of unnecessary typing of the whole solution.
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.