Asked by Benji
A mass of 20 kg on a plane inclined at 40 degrees. A string attached to that mass goes up the plane, passed over a pullley and is attached to mass of 30 kg that hangs verticalyy. a) find the acceleration and it's dirction b) the tension in the string. Assume no friction.
I first drew the picture. How would I find the equation since F=ma doesn't include everything?
F=ma (combined with Newton's third law) give you all you need to solve this problem.
The force on the hanging mass in the downward direction is:
F2 = m2 * g - T
where m2 = 30 kg
The force on the other mass in the direction parallel to the plane in which the string is pulling is:
F1 = -m1 * g sin(40°) + T
where m1 = 20 kg
Begause the string is assumed to be of fixed length the acceleration of mass 1 in the direction the string is pulling must be the same as the acceleration of mass 2 in the downward direction.
This means that:
F1/m1 = F2/m2
I first drew the picture. How would I find the equation since F=ma doesn't include everything?
F=ma (combined with Newton's third law) give you all you need to solve this problem.
The force on the hanging mass in the downward direction is:
F2 = m2 * g - T
where m2 = 30 kg
The force on the other mass in the direction parallel to the plane in which the string is pulling is:
F1 = -m1 * g sin(40°) + T
where m1 = 20 kg
Begause the string is assumed to be of fixed length the acceleration of mass 1 in the direction the string is pulling must be the same as the acceleration of mass 2 in the downward direction.
This means that:
F1/m1 = F2/m2
Answers
There are no human answers yet.
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.