Asked by Derek
                this can be done by projections of two vector. 
recall that the scalar projection of vector b on vector a is a∙b/│a│
so let's find a point on the give line,
e.g. the point B(6,0,1) (I let t=0)
draw a perpendicular from your given point P(1,-5,2) to meet the line at Q
So PQB forms a righ-angled triangle with │vector BP│ the hypotenuse.
vector BP, lets call it vector b, is (5,5,-1) and vector a is (3,1,2), (from your given line)
so the projection of vector b on vector a
= (5,5,-1)∙(3,1,2)/│(3,1,2)│
= (15+5-2)/√(9+1+4)
= 18/√14
also │b│ = √(25+25+1) = √51
You now have 2 sides of a right-angled triangle, with your required distance as the third side.
I will let you finish the arithmetic.
What do you with the triangle? How do you know which side is which, are you finding the hypotenuse, or just a side? This changes the math done. Like a^2+b^2=c^2, but if you are finding a side then it would be c^2-a^2=b^2...so can you please explain, thanks.
            
        recall that the scalar projection of vector b on vector a is a∙b/│a│
so let's find a point on the give line,
e.g. the point B(6,0,1) (I let t=0)
draw a perpendicular from your given point P(1,-5,2) to meet the line at Q
So PQB forms a righ-angled triangle with │vector BP│ the hypotenuse.
vector BP, lets call it vector b, is (5,5,-1) and vector a is (3,1,2), (from your given line)
so the projection of vector b on vector a
= (5,5,-1)∙(3,1,2)/│(3,1,2)│
= (15+5-2)/√(9+1+4)
= 18/√14
also │b│ = √(25+25+1) = √51
You now have 2 sides of a right-angled triangle, with your required distance as the third side.
I will let you finish the arithmetic.
What do you with the triangle? How do you know which side is which, are you finding the hypotenuse, or just a side? This changes the math done. Like a^2+b^2=c^2, but if you are finding a side then it would be c^2-a^2=b^2...so can you please explain, thanks.
Answers
                    Answered by
            Reiny
            
    Since you posted my reply, I will use my letters
I found │vector BP│ to be √51 , the hypotenuse
I found │vector bQ│ to be 18/√14
You want │vector PQ│
so (PQ)^2 + (BQ)^2 = (BP)^2
(PQ)^2 = (BP)^2 - (BQ)^2
= 51 - 324/14
= 390/14
BP = √(390/14)
= 5.278
    
I found │vector BP│ to be √51 , the hypotenuse
I found │vector bQ│ to be 18/√14
You want │vector PQ│
so (PQ)^2 + (BQ)^2 = (BP)^2
(PQ)^2 = (BP)^2 - (BQ)^2
= 51 - 324/14
= 390/14
BP = √(390/14)
= 5.278
                                                    There are no AI answers yet. The ability to request AI answers is coming soon!
                                            
                Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.