Asked by -Untamed-
Find the Zeros of the following functions
f(x) = x/3 +5
^ That one is layed out so differently I don't understand how to solve.
In each of the following, determine the zeros of the function and determine the y-intercept of the graph of the function.
f(x) = 5x^2 - 35x
f(x) = 3x(x^2-49)
f(x) = x/3 +5
^ That one is layed out so differently I don't understand how to solve.
In each of the following, determine the zeros of the function and determine the y-intercept of the graph of the function.
f(x) = 5x^2 - 35x
f(x) = 3x(x^2-49)
Answers
Answered by
Steve
It's not so different. It just has a fraction. You can always use y instead of f(x)
y = x/3 + 5
To solve, set y=0 and solve for x
0 = x/3 + 5
x/3 = -5
x = -3/5
___________________
The y-intercept is always easy. Just plug in x=0 and evaluate y
y = 5x^2 - 35x
y(0) = 0 so the y-intercept is (0,0)
5x^2 - 35x
= 5x(x-7)
so, y=0 when
5x(x-7) = 0
x=0 or x=7
The x-intercepts are (0,0) and (7,0)
Note that (0,0) is both an x-intercept and a y-intercept.
_______________________
y = 3x(x^2 - 49)
Think back to your factoring exercises, and recall the difference of two squares:
(a+b)(a-b) = a^2 - b^2
y = 3x(x+7)(x-7)
So, the y-intercept is (0,0)
x-intercepts are (0,0) (7,0) and (-7,0)
y = x/3 + 5
To solve, set y=0 and solve for x
0 = x/3 + 5
x/3 = -5
x = -3/5
___________________
The y-intercept is always easy. Just plug in x=0 and evaluate y
y = 5x^2 - 35x
y(0) = 0 so the y-intercept is (0,0)
5x^2 - 35x
= 5x(x-7)
so, y=0 when
5x(x-7) = 0
x=0 or x=7
The x-intercepts are (0,0) and (7,0)
Note that (0,0) is both an x-intercept and a y-intercept.
_______________________
y = 3x(x^2 - 49)
Think back to your factoring exercises, and recall the difference of two squares:
(a+b)(a-b) = a^2 - b^2
y = 3x(x+7)(x-7)
So, the y-intercept is (0,0)
x-intercepts are (0,0) (7,0) and (-7,0)
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.