Question
Find the length in the first quadrant of the circle described by the polar equation
r=(2 sin theta)+(4 cos theta)
A. (sqrt2)(pi)
B. (sqrt5)(pi)
C. (2)(pi)
D. (5)(pi)
r=(2 sin theta)+(4 cos theta)
A. (sqrt2)(pi)
B. (sqrt5)(pi)
C. (2)(pi)
D. (5)(pi)
Answers
I am confused also. That does not look to me like the polar equation for a circle.
It is the equation of a circle.
r = 2sinθ + 4cosθ
r*r = 2rsinθ + 4rcosθ
x^2 + y^2 = 2y + 4x
(x^2 - 4x + 4) + (y^2 - 2y + 1) = 4+1
(x-2)^2 + (y-1)^2 = 5
However, we need to find the area using polar coordinates:
As I noted in my earlier posting, the first quadrant means 0 <= θ <= pi/2
So, we integrate
A = 1/2 Int(r^2 dθ)[0,pi/2]
= 1/2 Int(4sin^2θ + 16sinθ cosθ + 16 cos^2θ dθ)[0,pi/2]
Recalling some trig identities:
sin^2θ + cos^2θ = 1
sin 2θ = 2sinθ cosθ
cos^2θ = (1 + cos2θ)/2
A = 1/2 Int(4 + 8sin2θ + 6(1 + cos2θ) dθ)[0,pi/2]
= 1/2 Int(10 + 8sin2θ + 6cos2θ)[0,pi/2]
= 1/2(10θ - 4cos2θ + 3sin2θ)[0,pi/2]
= (5θ - 2cos2θ + 3/2 sin2θ)[0,pi/2]
= (5*pi/2 - 2(-1) + 0) - (0 - 2(1) + 0)
= 5pi/2 + 4
= 11.854
I don't get any of the given choices. And, my answer agrees with wolfram dot com:
integrate .5*((2 sin theta)+(4 cos theta) )^2 dtheta, theta=0..pi/2
Take off the limits of integration to see that their indefinite integral also agrees with mine.
r = 2sinθ + 4cosθ
r*r = 2rsinθ + 4rcosθ
x^2 + y^2 = 2y + 4x
(x^2 - 4x + 4) + (y^2 - 2y + 1) = 4+1
(x-2)^2 + (y-1)^2 = 5
However, we need to find the area using polar coordinates:
As I noted in my earlier posting, the first quadrant means 0 <= θ <= pi/2
So, we integrate
A = 1/2 Int(r^2 dθ)[0,pi/2]
= 1/2 Int(4sin^2θ + 16sinθ cosθ + 16 cos^2θ dθ)[0,pi/2]
Recalling some trig identities:
sin^2θ + cos^2θ = 1
sin 2θ = 2sinθ cosθ
cos^2θ = (1 + cos2θ)/2
A = 1/2 Int(4 + 8sin2θ + 6(1 + cos2θ) dθ)[0,pi/2]
= 1/2 Int(10 + 8sin2θ + 6cos2θ)[0,pi/2]
= 1/2(10θ - 4cos2θ + 3sin2θ)[0,pi/2]
= (5θ - 2cos2θ + 3/2 sin2θ)[0,pi/2]
= (5*pi/2 - 2(-1) + 0) - (0 - 2(1) + 0)
= 5pi/2 + 4
= 11.854
I don't get any of the given choices. And, my answer agrees with wolfram dot com:
integrate .5*((2 sin theta)+(4 cos theta) )^2 dtheta, theta=0..pi/2
Take off the limits of integration to see that their indefinite integral also agrees with mine.
Related Questions
Find the area in the first quadrant bounded by the arc of the circle described by the polar equation...
Find the length in the first quadrant of the circle desribed by the polar equation r = 2sin theta +...
Polar Equation Question
The figure above shows the graph of the polar curve r=1−2cosθ for 0≤θ≤π a...