Asked by Anonymous
two curves are orthogonal at a point of intersection of their tangents at that point cross at right angles. Show that the curves 2x^2+3y^2=5 and y^2=x^3 are orthogonal at (1,1) and (1,-1). Use parametric mode to draw the curves and to show the tangent lines
Answers
Answered by
Steve
By inspection, the curves intersect at (1,1) and (1,-1)
ellipse: 4x + 6yy' = 0
y' = -2x/3y
at (1,1) slope = -2/3
at (1,-1) slope = 2/3
semicubical parabola: 2yy' = 3x^2
y' = 3x/2y
at (1,1) slope = 3/2
at (1,-1) slope = -3/2
The slopes at the intersections are negative reciprocals; hence the curves are orthogonal.
ellipse: 4x + 6yy' = 0
y' = -2x/3y
at (1,1) slope = -2/3
at (1,-1) slope = 2/3
semicubical parabola: 2yy' = 3x^2
y' = 3x/2y
at (1,1) slope = 3/2
at (1,-1) slope = -3/2
The slopes at the intersections are negative reciprocals; hence the curves are orthogonal.
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.