Asked by Ben
So from a previous post I asked,
"f(x)=(1+x) what is f'(x) when x=0?"
and someone replied,
"the derivative of f(x)=x+1 is f'(x)=1 so your answer would just be 1"
Now my question is why!? it doesn't matter what x is? f'x when x=238423904 will also be 1? For some reason I thought that you would have to plug in 0 for x.. like you've got f(x) = (1+x) and when x = 0, f(0) = (1+0) = 1. So f'(0) would = 0. Can anybody help me rationalize why this is wrong? thanks in advance
"f(x)=(1+x) what is f'(x) when x=0?"
and someone replied,
"the derivative of f(x)=x+1 is f'(x)=1 so your answer would just be 1"
Now my question is why!? it doesn't matter what x is? f'x when x=238423904 will also be 1? For some reason I thought that you would have to plug in 0 for x.. like you've got f(x) = (1+x) and when x = 0, f(0) = (1+0) = 1. So f'(0) would = 0. Can anybody help me rationalize why this is wrong? thanks in advance
Answers
Answered by
Steve
The derivative measures how much f(x) changes when x changes. That is called the slope. A (suitably smooth) curved graph has a tangent line at every point, whose slope is the derivative of the function at that value of x.
Now, the function f(x) = 1+x has a graph which is a straight line. The slope never changes. So, the graph of the derivative is just the line y=1.
So, yes, when x=238423904, f'(x) is still just 1. You can't plug in different values for x, because f'(x) does not depend on x in any way.
Now, the function f(x) = 1+x has a graph which is a straight line. The slope never changes. So, the graph of the derivative is just the line y=1.
So, yes, when x=238423904, f'(x) is still just 1. You can't plug in different values for x, because f'(x) does not depend on x in any way.
Answered by
Ben
ahh thank you so much
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.