Asked by invy
a car travels at a constants speed and uses G(x) litres of gas per kilomotre, where x is the speed of the car in kilomotres oer hour and G(x)=(1280+x^2)/(320x)
a>if fuel costs 1.29 per litre, determine the cost function C(x)that expresses the cost of the fuel for a 200KM trip as a function of the speed.
b>what driving speed will make the cost of fuel equal to 300
c>what driving speed will minimize the cost of fuel for the trip?
a>if fuel costs 1.29 per litre, determine the cost function C(x)that expresses the cost of the fuel for a 200KM trip as a function of the speed.
b>what driving speed will make the cost of fuel equal to 300
c>what driving speed will minimize the cost of fuel for the trip?
Answers
Answered by
Steve
G(x) = 4/x + x/320
(a) C(x) = cost for x km trip
$ = liters * $/liter
liters = L/km * km
C(x) = G(x) * 200 * 1.29
= 258*G(x)
= 258(4/x + x/320) = 1032/x + 258/320 * x
(b) 300 = 1032/x + 258/320 x
96000x = 330240 + 258x^2
x = 3.4 or 368.6 ???!!!??
(c) C' = -1032/x^2 + 0.80625
C' = 0 at x = 35.8 km/h
If my math is right, that's some weird numbers...
(a) C(x) = cost for x km trip
$ = liters * $/liter
liters = L/km * km
C(x) = G(x) * 200 * 1.29
= 258*G(x)
= 258(4/x + x/320) = 1032/x + 258/320 * x
(b) 300 = 1032/x + 258/320 x
96000x = 330240 + 258x^2
x = 3.4 or 368.6 ???!!!??
(c) C' = -1032/x^2 + 0.80625
C' = 0 at x = 35.8 km/h
If my math is right, that's some weird numbers...
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.