Duplicate Question
The question on this page has been marked as a duplicate question.
Original Question
A searchlight rotates at a rate of 4 revolutions per minute.? The beam hits a wall located 13 miles away and produces a dot of...Asked by Reonea
A searchlight rotates at a rate of 2 revolutions per minute. The beam hits a wall located 8 miles away and produces a dot of light that moves horizontally along the wall. How fast (in miles per hour) is this dot moving when the angle between the beam and the line through the searchlight perpendicular to the wall is pi/5? Note that d angle,dt=2(2pi)=4pi.
Speed of dot _______ = mph.
Speed of dot _______ = mph.
Answers
Answered by
bobpursley
draw the triangle
s=Searchlight postion
8= distance wall is away.
x= distance from the perpendicular to the light to the position of the beam, so that
TanTheta=x/8
take derivative w/respect to time
d(tanTheta)=1/8 dx/dt
sec^2 theta * dtheta/dt=1/8 dx/dt
you are given theta, given dtheta/dt (4PI), find dx/dt
s=Searchlight postion
8= distance wall is away.
x= distance from the perpendicular to the light to the position of the beam, so that
TanTheta=x/8
take derivative w/respect to time
d(tanTheta)=1/8 dx/dt
sec^2 theta * dtheta/dt=1/8 dx/dt
you are given theta, given dtheta/dt (4PI), find dx/dt
Answered by
H H Chau
dθ/dt=2 rev/min=4π rad/min
dx/dt=8*(sec^2(π/5))*8π=154 miles/min=9216 mph
dx/dt=8*(sec^2(π/5))*8π=154 miles/min=9216 mph
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.