Asked by Courtney
The lengths of two opposing sides of a square are decreased by forty percent. By approximately what percent would the lengths of the other two sides have to be INCREASED so that the area of the new figure ( a rectangle) is the same as the area of the original square?
Answers
Answered by
drwls
Let a = the original square side length.
Reducing it by 40% leaves two opposing sides of the rectangle with length 0.6a. Let the other two sides' length be x
0.6a * x = a^2
x = a/0.6 = 5/3 * a
The other two side lengths must be inceased by 66.7% to keep the area the same.
Reducing it by 40% leaves two opposing sides of the rectangle with length 0.6a. Let the other two sides' length be x
0.6a * x = a^2
x = a/0.6 = 5/3 * a
The other two side lengths must be inceased by 66.7% to keep the area the same.
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.