Asked by Kalia
Trigonometry problem:
The sides AB and AC of triangle ABC are of lengths 4 and 7 respectively. M is the midpoint of BC. AM is of length 3.5, Find the length of BC.
The sides AB and AC of triangle ABC are of lengths 4 and 7 respectively. M is the midpoint of BC. AM is of length 3.5, Find the length of BC.
Answers
Answered by
Reiny
Complete the parallelogram ABPC , where BP=7 and PC=4
In a ||gram , diagonals bisect each other, so M is the midpoint of both diagonals and AP = 2(3.5) = 7
(looks like we have isosceles triangles, but that doesn't matter)
let angle PAC =Ø
let MC = a , thus BC = 2a for later
In triangle APC, by cosine law
4^2 = 7^2 + 7^2 - 2(7)(7)cosØ
cosØ = 82/98 = 41/49
in triangle AMC
a^2 = 3.5^2 + 7^2 - 2(3.5)(7)cosØ
= 61.25 - 49(41/49) = 20.25
a=√20.25 = 4.5
So BC = 2a = 2(4.5) = 9
better check my arithmetic, I have made some silly errors lately.
In a ||gram , diagonals bisect each other, so M is the midpoint of both diagonals and AP = 2(3.5) = 7
(looks like we have isosceles triangles, but that doesn't matter)
let angle PAC =Ø
let MC = a , thus BC = 2a for later
In triangle APC, by cosine law
4^2 = 7^2 + 7^2 - 2(7)(7)cosØ
cosØ = 82/98 = 41/49
in triangle AMC
a^2 = 3.5^2 + 7^2 - 2(3.5)(7)cosØ
= 61.25 - 49(41/49) = 20.25
a=√20.25 = 4.5
So BC = 2a = 2(4.5) = 9
better check my arithmetic, I have made some silly errors lately.
Answered by
Kalia
Thank You!
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.