Asked by lori
Given the following sets, select the statement below that is NOT true.
A = {b, l, a, z, e, r}, B = {b, a, l, e}, C = {a, b, l, e}, D = {l, a, b}, E = {a, b, l}
(Points : 2)
E ⊂ C
C ⊆ B
D ⊆ C
B ⊆ C
C ⊆ D
A = {b, l, a, z, e, r}, B = {b, a, l, e}, C = {a, b, l, e}, D = {l, a, b}, E = {a, b, l}
(Points : 2)
E ⊂ C
C ⊆ B
D ⊆ C
B ⊆ C
C ⊆ D
Answers
Answered by
MathMate
⊂ means a proper subset.
E⊂C means E is a proper subset of C, or "all elements of E are in C, AND E≠C".
C = {a, b, l, e}, E = {a, b, l}
Since a,b,l are in C, and E≠C, the statement is true.
There is one statement where the number members of the subset exceeds that of the set, which is impossible.
Can you find the statement?
E⊂C means E is a proper subset of C, or "all elements of E are in C, AND E≠C".
C = {a, b, l, e}, E = {a, b, l}
Since a,b,l are in C, and E≠C, the statement is true.
There is one statement where the number members of the subset exceeds that of the set, which is impossible.
Can you find the statement?
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.