Asked by Luke
For a skewed distribution, what is the approximate percentage of data values that are within 2 standard deviations
Answers
Answered by
MathGuru
Chebyshev's Theorem can be used for a skewed distribution.
This theorem says:
1. Within two standard deviations of the mean, you will find at least 75% of the data.
2. Within three standard deviations of the mean, you will find at least 89% of the data.
Here's how the formula shows this:
Formula is 1 - (1/k^2) ---> ^2 means squared.
If k = 2 (representing two standard deviations), we have this:
1 - (1/2^2) = 1 - (1/4) = 3/4 or .75 or 75%
If k = 3 (representing three standard deviations), we have this:
1 - (1/3^2) = 1 - (1/9) = 8/9 or approximately .89 or 89%
I hope this helps.
This theorem says:
1. Within two standard deviations of the mean, you will find at least 75% of the data.
2. Within three standard deviations of the mean, you will find at least 89% of the data.
Here's how the formula shows this:
Formula is 1 - (1/k^2) ---> ^2 means squared.
If k = 2 (representing two standard deviations), we have this:
1 - (1/2^2) = 1 - (1/4) = 3/4 or .75 or 75%
If k = 3 (representing three standard deviations), we have this:
1 - (1/3^2) = 1 - (1/9) = 8/9 or approximately .89 or 89%
I hope this helps.
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.