Asked by geekgirl95
april sells specialty teddy bears at various summer festivals. her profit for a week,P, in dollars, can be modelled by P= -0.1n^2 + 30n - 1200, where n is the umber of teddy bearsshe sells during the week.
a.) According to this model, could april ever earn a profit of $2000.
b.) how many teddy bears would she have to sell to break even ?
c.) how many teddy bears to earn $500?
d.) how many teddy bears would she have to sell to maximize her profit?
a.) According to this model, could april ever earn a profit of $2000.
b.) how many teddy bears would she have to sell to break even ?
c.) how many teddy bears to earn $500?
d.) how many teddy bears would she have to sell to maximize her profit?
Answers
Answered by
MathMate
Given Profit, P = -0.1n^2 + 30n - 1200
a.
If P=2000, then
2000=-0.1n^2 + 30n - 1200
Solve for n in
0.1n^2 - 30n + 1200 + 2000 = 0
or
n^2 - 300n + 32000 = 0
Since the discriminant (-300)²-4*3200 < 0
there are no real roots for n, hence April will not be able to get a profit of $2000.
b. to break even means P=0
c. to make a profit of $500 means P=500
d. to maximize profit will require a little trial and error (it is between n=100 and n=200).
However, if you have learned calculus, you can equate P'(n)=0. If not, you can also evaluate the value of n to give a Pmax at n=-b/(2a) in the equation
P(n)=a*n^2 + b*n + c
a.
If P=2000, then
2000=-0.1n^2 + 30n - 1200
Solve for n in
0.1n^2 - 30n + 1200 + 2000 = 0
or
n^2 - 300n + 32000 = 0
Since the discriminant (-300)²-4*3200 < 0
there are no real roots for n, hence April will not be able to get a profit of $2000.
b. to break even means P=0
c. to make a profit of $500 means P=500
d. to maximize profit will require a little trial and error (it is between n=100 and n=200).
However, if you have learned calculus, you can equate P'(n)=0. If not, you can also evaluate the value of n to give a Pmax at n=-b/(2a) in the equation
P(n)=a*n^2 + b*n + c
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.