Question
Determine if the argument is valid or invalid. Give a reason to justify answer.
If it is cold, then you need a coat.
You do not need a coat.
It is not cold.
(Points : 2)
Valid by the law of detachment
Valid by the law of contraposition
Invalid by fallacy of the converse
Invalid by fallacy of the inverse
Valid by the law of syllogism
Valid by disjunctive syllogism
If it is cold, then you need a coat.
You do not need a coat.
It is not cold.
(Points : 2)
Valid by the law of detachment
Valid by the law of contraposition
Invalid by fallacy of the converse
Invalid by fallacy of the inverse
Valid by the law of syllogism
Valid by disjunctive syllogism
Answers
Let
P: "it is cold"
Q: "you need a coat"
The first statement is therefore
P → Q
The second part has been written in two separate statements, ¬Q, ¬P.
If we can <i>assume</i> it to be related as "It is not cold, therefore you do not need a coat", or
¬Q → ¬P, then you can take one of the given choices, using the following help:
law of detachment:
(P∧Q) ∧ P => Q
law of contraposition:
(P → Q) ≡ (¬Q → ¬P)
converse of P → Q:
Q → P
inverse of P → Q:
¬P → ¬Q
law of syllogism (transitivity):
(P → Q) ∧ (Q → R) => (P → R)
disjunctive syllogism:
[P → (Q ∨ R)] ∧ ¬R => (P → Q)
P: "it is cold"
Q: "you need a coat"
The first statement is therefore
P → Q
The second part has been written in two separate statements, ¬Q, ¬P.
If we can <i>assume</i> it to be related as "It is not cold, therefore you do not need a coat", or
¬Q → ¬P, then you can take one of the given choices, using the following help:
law of detachment:
(P∧Q) ∧ P => Q
law of contraposition:
(P → Q) ≡ (¬Q → ¬P)
converse of P → Q:
Q → P
inverse of P → Q:
¬P → ¬Q
law of syllogism (transitivity):
(P → Q) ∧ (Q → R) => (P → R)
disjunctive syllogism:
[P → (Q ∨ R)] ∧ ¬R => (P → Q)
Related Questions
1. Determine whether the following arguments are valid or invalid. If valid determine whether they a...
Determine if the argument is valid or invalid. Give a reason to justify answer.
If the bell rings...
Directions: Define the necessary symbols, rewrite the argument in symbolic form, and us a truth tabl...