Asked by Hannah
(1 pt) A box contains 25 yellow, 28 green and 38 red jelly beans.
If 13 jelly beans are selected at random, what is the probability that:
a) 5 are yellow?
b) 5 are yellow and 7 are green?
c) At least one is yellow?
If 13 jelly beans are selected at random, what is the probability that:
a) 5 are yellow?
b) 5 are yellow and 7 are green?
c) At least one is yellow?
Answers
Answered by
MathMate
In total, there are 25+28+38=91 jelly beans.
Using (n,r) to stand for "n choose r"
=n!/(r!(n-r)!)
To choose y yellow, g green and r red jelly beans, the number of ways to choose is given by
(25,y)*(28,g)*(38,r)
and the number of ways to choose the same number of jelly beans irrespective of colour is
(25+28+38,y+g+r)=(91,y+g+r)
So the probability is:
(25,y)*(28,g)*(38,r) / (91,y+g+r)
For 5 yellow, we not worry about the other two colours, so they can be combined, call it x. We need 8 of x.
Probability
=(25,5)*(66,8)/(91,13)
=53130*5743572120/1917283000904460
=0.1592 (approx.)
For (b), it is a similar expression. I get approx. 0.0012
For (c), you would choose 13 out of green and red, and subtract from the probability of 1.
1-(66,13)(25,0)/(91,13)
=1-0.01
=0.99 (approximately)
See also following link for a detailed explanation:
http://mathforum.org/library/drmath/view/69151.html
Using (n,r) to stand for "n choose r"
=n!/(r!(n-r)!)
To choose y yellow, g green and r red jelly beans, the number of ways to choose is given by
(25,y)*(28,g)*(38,r)
and the number of ways to choose the same number of jelly beans irrespective of colour is
(25+28+38,y+g+r)=(91,y+g+r)
So the probability is:
(25,y)*(28,g)*(38,r) / (91,y+g+r)
For 5 yellow, we not worry about the other two colours, so they can be combined, call it x. We need 8 of x.
Probability
=(25,5)*(66,8)/(91,13)
=53130*5743572120/1917283000904460
=0.1592 (approx.)
For (b), it is a similar expression. I get approx. 0.0012
For (c), you would choose 13 out of green and red, and subtract from the probability of 1.
1-(66,13)(25,0)/(91,13)
=1-0.01
=0.99 (approximately)
See also following link for a detailed explanation:
http://mathforum.org/library/drmath/view/69151.html
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.