Asked by AIRA
Region A that on xy-plane is bounded by two (2) curves and a line. The curves are y=x^3-2x+3 and y=-x^2+3 while the line is x=0. It is located in the first quadrant of xy-plane. Determine the area of region A.
Answers
Answered by
Reiny
Make a sketch and then solve for the intersection of the two curves
x^2 - 2x + 3 = -x^2 + 3
.....
x = 0 or x = 1
so
area = [integral] (-x^2 + 3 -(x^2 - 2x+3)) dx from 0 to 1
= integral (-2x^2 + 2x)dx from 0 to 1
= (-2/3)x^3 + x^2 | from 0 to 1
= -2/3 + 1 - 0
= 1/3
x^2 - 2x + 3 = -x^2 + 3
.....
x = 0 or x = 1
so
area = [integral] (-x^2 + 3 -(x^2 - 2x+3)) dx from 0 to 1
= integral (-2x^2 + 2x)dx from 0 to 1
= (-2/3)x^3 + x^2 | from 0 to 1
= -2/3 + 1 - 0
= 1/3
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.