Asked by Anastasia
let d2y/dx2= 6x. Find a solution to the differential equation that is continuous for negative infinity to positive infinity and whose graph passes through the point (0,1) and has a horizontal tangent there.
Answers
Answered by
MathMate
Initial value problem.
f"(x)=6x
f'(x)=3x² + C
f(x)=x³ + Cx + D
(each integration introduces one integration constant: C and D)
Given f(0)=1, and f'(0)=0
f(0) = 1 = 0³+C(0)+D => D=1
f'(0) = 0 = 3(0)² + C => C=0
Therefore
f(x)=x³+1
Since the function is a polynomial, its domain is (-∞,∞).
f"(x)=6x
f'(x)=3x² + C
f(x)=x³ + Cx + D
(each integration introduces one integration constant: C and D)
Given f(0)=1, and f'(0)=0
f(0) = 1 = 0³+C(0)+D => D=1
f'(0) = 0 = 3(0)² + C => C=0
Therefore
f(x)=x³+1
Since the function is a polynomial, its domain is (-∞,∞).
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.