Duplicate Question
The question on this page has been marked as a duplicate question.
Original Question
An astronaut on the surface of Mars fires a cannon to launch an experiment package, which leaves the barrel moving horizontally...Asked by Anonymous
An astronaut on the surface of Mars fires a cannon to launch an experiment package, which leaves the barrel moving horizontally. Assume that the free-fall acceleration on Mars is three eighths that on the Earth.(a) What must be the muzzle speed of the package so that it travels completely around Mars and returns to its original location?
(b) How long does this trip around Mars take?
(b) How long does this trip around Mars take?
Answers
Answered by
tchrwill
The circular velocity required to orbit a planet derives from V = sqrt[µ/R] where µ = the gravitational constant of the planet and R = the radius(in feet) of the orbiting body around the planet.
For Mars,
µ = 1.512819x10^15 ft.^3/sec.^2
R = 2111 miles = 11,146,080 feet
Therefore, V = sqrt[1.512819x10^15/11,146,080] = 11,650 ft./sec. = 7,943mph.
The time, or period, to complete an orbit derives from
T = 2(Pi)sqrt[r^3/µ]
...= 2(Pi)sqrt[11,146,080^3/1.512819x10^15] = 6011sec. = 100.18 minutes.
For Mars,
µ = 1.512819x10^15 ft.^3/sec.^2
R = 2111 miles = 11,146,080 feet
Therefore, V = sqrt[1.512819x10^15/11,146,080] = 11,650 ft./sec. = 7,943mph.
The time, or period, to complete an orbit derives from
T = 2(Pi)sqrt[r^3/µ]
...= 2(Pi)sqrt[11,146,080^3/1.512819x10^15] = 6011sec. = 100.18 minutes.
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.