A sequence{an} is given by a1=sqrt(2), an+1=sqrt(2*an).

a) by induction or otherwise, show that {an} is increasing and bounded above by 3. Apply the Monotonic Sequence Theorem to show that lim n-->infinity an exists.
b) Find lim n-->infinity an.

Similar Questions
  1. Evaluate sqrt7x (sqrt x-7 sqrt7) Show your work.sqrt(7)*sqrt(x)-sqrt(7)*7*sqrt(7) sqrt(7*x)-7*sqrt(7*7) sqrt(7x)-7*sqrt(7^2)
    1. answers icon 1 answer
  2. Could someone show me how to solve these problems step by step....I am confused on how to fully break this down to simpliest
    1. answers icon 1 answer
  3. sqrt 6 * sqrt 8also sqrt 7 * sqrt 5 6.92820323 and 5.916079783 So you can see the steps — sqrt 6 * sqrt 8 = sqrt 48 sqrt 7 *
    1. answers icon 0 answers
    1. answers icon 1 answer
more similar questions