Asked by janet
                 Use the Intermediate Value Theorem and a graphing utility to find intervals of length 1 in which the polynomial is guaranteed to have a zero. Use the root feature of a graphing utility to approximate the zeros of the function.
h(x)=x^4-10x^2+2
            
            
        h(x)=x^4-10x^2+2
Answers
                    Answered by
            MathMate
            
    The intermediate value theorem states that:
"for each value between the least upper bound and greatest lower bound of the image of a continuous function there is a corresponding point in its domain that the function maps to that value".
This implies that when the function evaluated at the limits of an interval have opposing signs, a zero of the function exists between the limits.
By graphing the function, you will find that all four real roots fall between -4 and +4. Use the roots features available in most graphing calculators to find the "exact" roots.
Hint: you can check the results by substituting y=x² which transforms the function to a quadratic function in y that can be solved exactly. x is simply ±√(y).
    
"for each value between the least upper bound and greatest lower bound of the image of a continuous function there is a corresponding point in its domain that the function maps to that value".
This implies that when the function evaluated at the limits of an interval have opposing signs, a zero of the function exists between the limits.
By graphing the function, you will find that all four real roots fall between -4 and +4. Use the roots features available in most graphing calculators to find the "exact" roots.
Hint: you can check the results by substituting y=x² which transforms the function to a quadratic function in y that can be solved exactly. x is simply ±√(y).
                    Answered by
            Anonymous
            
    e^x=x^2
    
                                                    There are no AI answers yet. The ability to request AI answers is coming soon!
                                            
                Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.