Asked by dana
(a) Find the critical points of f(x) = x^(1/3)-x^(1/5)
(b) Determine the maximum and minimum values of f on the interval [0; 2] and where they occur.
(b) Determine the maximum and minimum values of f on the interval [0; 2] and where they occur.
Answers
Answered by
Reiny
I will assume that you know that critical points would be points such as the x and y intercepts, the max and min points, and any points of inflection.
I think the problem here lies in trying to solve different equations containing fractional exponents.
the y-intercept is easy, let x = 0
y = 0
for the x-intercept let y = 0
so x^(1/2 - x^(1/5) = 0
x^(1/3) = x^(1/5)
raise it to the 15th power, (15 is the LCM of 3 and 5)
x^5 = x^3
x^5 - x^3 - 0
x^3(x^2 - 1) = 0
x = 0 or x = ± 1
After you get dy/dx = (1/3)x^(-2/3) - (1/5)x^(-4/5)
you will have to set this equal to zero as well
so the same sort of thing as above
x^(-2/3) = x^(-4/5) , after dividing out the 1/3
so 1/x^(2/3) = 1/x^(4/5)
x^(4/5) = x^(2/3) after cross-multiplying
raise to the 15th
x^12 = x^10
x^10(x^2 - 1) = 0
x = 0 or x = ± 1 (well, isn't that interesting)
etc.
I think the problem here lies in trying to solve different equations containing fractional exponents.
the y-intercept is easy, let x = 0
y = 0
for the x-intercept let y = 0
so x^(1/2 - x^(1/5) = 0
x^(1/3) = x^(1/5)
raise it to the 15th power, (15 is the LCM of 3 and 5)
x^5 = x^3
x^5 - x^3 - 0
x^3(x^2 - 1) = 0
x = 0 or x = ± 1
After you get dy/dx = (1/3)x^(-2/3) - (1/5)x^(-4/5)
you will have to set this equal to zero as well
so the same sort of thing as above
x^(-2/3) = x^(-4/5) , after dividing out the 1/3
so 1/x^(2/3) = 1/x^(4/5)
x^(4/5) = x^(2/3) after cross-multiplying
raise to the 15th
x^12 = x^10
x^10(x^2 - 1) = 0
x = 0 or x = ± 1 (well, isn't that interesting)
etc.
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.