Asked by Ann
A beam of particles have a measured life time of 1.5 x 10-8 s when traveling 2.0 x 108 m/s. What would their lifetime be if they were at rest?
My Answer:
tm= tp/√(1-(v2/c2))
(1.5*10-8) = tp/√(1-((2*108)2/(3*108)2))
(1.5*10-8) = tp/√(1-((4*1016)/(9*1016))
(1.5*10-8) = tp/√(1-(4/9))
(1.5*10-8) = tp/√(5/9)
tp =(√(5)/3)(1.5*10-8)
tp =1.118033989*10-8
The lifetime of the particles if they were at rest would be 1.1*10-8s.
Is this correct? Thanks.
My Answer:
tm= tp/√(1-(v2/c2))
(1.5*10-8) = tp/√(1-((2*108)2/(3*108)2))
(1.5*10-8) = tp/√(1-((4*1016)/(9*1016))
(1.5*10-8) = tp/√(1-(4/9))
(1.5*10-8) = tp/√(5/9)
tp =(√(5)/3)(1.5*10-8)
tp =1.118033989*10-8
The lifetime of the particles if they were at rest would be 1.1*10-8s.
Is this correct? Thanks.
Answers
Answered by
drwls
yes; good work!
Answered by
mike
tm= tp/√(1-(v2/c2))
(1.5*10-8) = tp/√(1-((2*108)2/(3*108)2))
(1.5*10-8) = tp/√(1-((4*1016)/(9*1016))
(1.5*10-8) = tp/√(1-(4/9))
(1.5*10-8) = tp/√(5/9)
tp =(√(5)/3)(1.5*10-8)
tp =1.118033989*10-8
on the 6th line, why does it become √(5)/3)? Is it not supposed to be √(5/9) from the line before?
(1.5*10-8) = tp/√(1-((2*108)2/(3*108)2))
(1.5*10-8) = tp/√(1-((4*1016)/(9*1016))
(1.5*10-8) = tp/√(1-(4/9))
(1.5*10-8) = tp/√(5/9)
tp =(√(5)/3)(1.5*10-8)
tp =1.118033989*10-8
on the 6th line, why does it become √(5)/3)? Is it not supposed to be √(5/9) from the line before?
Answered by
pro
yes this is right
in anwser to mike, they square rooted 3 but not 5
so it because (√(5)/3) = (√(5/9))
in anwser to mike, they square rooted 3 but not 5
so it because (√(5)/3) = (√(5/9))
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.