Asked by Amanda
Explain how you can tell (without graphing it) that the rational function
r(x)= x^6 +10 / x^4+8x^2+15
has no x intercept and no horizontal, vertical, or slant asymptote. What is its end behaviour?
Please help? thankq
r(x)= x^6 +10 / x^4+8x^2+15
has no x intercept and no horizontal, vertical, or slant asymptote. What is its end behaviour?
Please help? thankq
Answers
Answered by
MathMate
Horizontal/slant intercepts:
divide the leading coefficient of the numerator by that of the denominator:
q=x^6/x^4=x²
If q is a numerical constant, the horizontal asymptote is at y=q.
If q is a linear term, such as 2x, then there is a slant asymptote along the line y=2x.
Vertical asymptotes occur where the denominator becomes zero.
Substitute y=x² in the denominator and solve for the resulting quadratic where y=-3 or -5. Clearly the solutions for x in y=-3 or -5 are complex, therefore the denominator does not become zero, hence no vertical asymptote.
divide the leading coefficient of the numerator by that of the denominator:
q=x^6/x^4=x²
If q is a numerical constant, the horizontal asymptote is at y=q.
If q is a linear term, such as 2x, then there is a slant asymptote along the line y=2x.
Vertical asymptotes occur where the denominator becomes zero.
Substitute y=x² in the denominator and solve for the resulting quadratic where y=-3 or -5. Clearly the solutions for x in y=-3 or -5 are complex, therefore the denominator does not become zero, hence no vertical asymptote.
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.