Asked by al
A landscape architect wished to enclose a rectangular garden on one side by a brick wall costing $30/ft and on the other three sides by a metal fence costing $10/ft. If the area of the garden is 42 square feet, find the dimensions of the garden that minimize the cost.
Answers
Answered by
drwls
Let x be the brick wall side length and y be the other dimension.
x y = 42 (area requirement)
10 (x+2y) + 30 x = Cost(x,y)
Substitute 42/x for y in the Cost equation to get an equation for cost in terms of x only.
Cost(x) = 10(x + 84/x) + 30x
= 40x + 84/x
Set the derivative equal to 0 and solve fpr x to see where the minimum cost occurs.
x y = 42 (area requirement)
10 (x+2y) + 30 x = Cost(x,y)
Substitute 42/x for y in the Cost equation to get an equation for cost in terms of x only.
Cost(x) = 10(x + 84/x) + 30x
= 40x + 84/x
Set the derivative equal to 0 and solve fpr x to see where the minimum cost occurs.
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.