Asked by APpreciative student
                Hi! Thank you very much for your help---
I'm not sure what the answer to this is; how do I solve?
Find antiderivative of
(1/(x^2))[sec(1/x)][tan(1/x)]dx
I did integration by parts and got to
(1/(x^2))[sec(1/x)] + 2*[antiderivative of (1/(x^3))(sec(1/x))dx]
            
            
        I'm not sure what the answer to this is; how do I solve?
Find antiderivative of
(1/(x^2))[sec(1/x)][tan(1/x)]dx
I did integration by parts and got to
(1/(x^2))[sec(1/x)] + 2*[antiderivative of (1/(x^3))(sec(1/x))dx]
Answers
                    Answered by
            MathMate
            
    Integration by parts is the same as any other tool.  It's just a tool.  You can go around in circles with it... unless you know where you're going.
For this particular problem, I propose to use another tool, substitution.
Did you notice there is the factor (1/x²) at the beginning? What would ∫(1/x²)dx give? ∫-d(1/x).
So the integral becomes:
I=∫(1/(x^2))[sec(1/x)][tan(1/x)]dx
=∫[sec(1/x)][tan(1/x)]d(1/x)
=∫sec(y)tan(y)dy
= ... +C
Do remember, however, if and when you have to evaluate a definite integral, the limits have to correspond to the integration variable, which in this case is (1/x).
    
For this particular problem, I propose to use another tool, substitution.
Did you notice there is the factor (1/x²) at the beginning? What would ∫(1/x²)dx give? ∫-d(1/x).
So the integral becomes:
I=∫(1/(x^2))[sec(1/x)][tan(1/x)]dx
=∫[sec(1/x)][tan(1/x)]d(1/x)
=∫sec(y)tan(y)dy
= ... +C
Do remember, however, if and when you have to evaluate a definite integral, the limits have to correspond to the integration variable, which in this case is (1/x).
                                                    There are no AI answers yet. The ability to request AI answers is coming soon!
                                            
                Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.