Asked by Becky
A satellite with an orbital period of exactly 24.0 h is always positioned over the same spot on Earth. This is known as a geosynchronous orbit. Television, communication, and weather satellites use geosynchronous orbits. At what distance would a satellite have to orbit Earth in order to have a geosynchronous orbit?
Answers
Answered by
bobpursley
set the force of gravity equal to centripetal force.
GMm/r^2=mw^2*r
where w=2pi/period (set period to seconds in a day)
solve for r
GMm/r^2=mw^2*r
where w=2pi/period (set period to seconds in a day)
solve for r
Answered by
tchrwill
The time it takes a satellite to orbit the earth, its orbital period, can be calculated from
T = 2(Pi)sqrt[a^3/µ]
where T is the orbital period in seconds, Pi = 3.1416, a = the semi-major axis of an elliptical orbit = (rp+ra)/2 where rp = the perigee (closest) radius and ra = the apogee (farthest) radius from the center of the earth, µ = the earth's gravitational constant = 1.407974x10^16 ft.^3/sec.^2. In the case of a circular orbit, a = r, the radius of the orbit.
The geostationary orbit is one where a spacecraft or satellite appears to hover over a fixed point on the Earth's surface. There is only one geostationary orbit in contrast to there being many geosynchronous orbits. What is the difference you ask? A geosycnchronous orbit is one with a period equal to the earth's rotational period, which, contrary to popular belief, is 23hr-56min-4.09sec., not 24 hours. Thus, the required altltude providing this period is ~22,238.64 miles, or ~35,787.875 kilometers.
T = 2(Pi)sqrt[a^3/µ]
where T is the orbital period in seconds, Pi = 3.1416, a = the semi-major axis of an elliptical orbit = (rp+ra)/2 where rp = the perigee (closest) radius and ra = the apogee (farthest) radius from the center of the earth, µ = the earth's gravitational constant = 1.407974x10^16 ft.^3/sec.^2. In the case of a circular orbit, a = r, the radius of the orbit.
The geostationary orbit is one where a spacecraft or satellite appears to hover over a fixed point on the Earth's surface. There is only one geostationary orbit in contrast to there being many geosynchronous orbits. What is the difference you ask? A geosycnchronous orbit is one with a period equal to the earth's rotational period, which, contrary to popular belief, is 23hr-56min-4.09sec., not 24 hours. Thus, the required altltude providing this period is ~22,238.64 miles, or ~35,787.875 kilometers.
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.