Asked by Allie
                Use the rational zero theorem, Descartes rule of signs, and the theorem on bounds as aids in finding all real and imaginary roots to the following equation:
4x^(3)-17x^(2)+16=0
            
        4x^(3)-17x^(2)+16=0
Answers
                    Answered by
            MathMate
            
    By the Descartes rule of signs, we know that there are two positive roots out of three, which also tells us that all the roots are real.
Using the rational zero theorem, we know that rational roots, if any, have to be of the form ±p/q, where p is a factor of 16, and q is a factor of 4.
So the possible rational zeroes are:
±(1/4,1/2,1,2,4,8 and 16), from which we can find x=4 is a root.
Use polynomial division to reduce the polynomial to a quadratic from which the two remaining (irrational) roots can be found.
Note: If we differentiate the polynomial and equate to zero, we find that the local maximum/minimum are at 0 and 2.8. The theorem on bounds tells us that there is a zero between 0 and 2.8, and the other two are at <0 and >2.8 respectively.
    
Using the rational zero theorem, we know that rational roots, if any, have to be of the form ±p/q, where p is a factor of 16, and q is a factor of 4.
So the possible rational zeroes are:
±(1/4,1/2,1,2,4,8 and 16), from which we can find x=4 is a root.
Use polynomial division to reduce the polynomial to a quadratic from which the two remaining (irrational) roots can be found.
Note: If we differentiate the polynomial and equate to zero, we find that the local maximum/minimum are at 0 and 2.8. The theorem on bounds tells us that there is a zero between 0 and 2.8, and the other two are at <0 and >2.8 respectively.
                                                    There are no AI answers yet. The ability to request AI answers is coming soon!
                                            
                Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.