Asked by Shane
I have a series of questions that I did. They lead up to the last question I can't solve. Could you check my math and help me with the last question? Thanks!
a) Let a be the point (2,3). Compute the distance from Origin 0 to A
answer: a^2 + b^2 = c^2
3^2 + 2^2 = c^2
c=sqrt(13)
b) find the equation of circle C passing through point A
x^2 + y^2 = 13 -> since the center is (0,0), right?
c) find the equation of line D tangent to the circle C at point A
since the equation for line OA is y=3/2 x + 0 , I can use the negative inverse of the slope to get the slope of the tangent, right?
so I used y=-2/3 x +b and input the coordinates (2,3) to get b
3 = (-2/3)(2) + b
b = 4 , therefore the equation of the tangent is y=-2/3 x + 4 right?
d) line D meet Ox at point B. Find the coordinates of B.
This is where I'm a little confused. Does "Ox" mean the x-axis? That's what I went on so I just used the previous line equation and set y to zero:
0= -2/3 x + b
x = 6 therefore line D meets Ox when x=6 coordinates (6,0)
e) compute distance of AB
A(2,3) B(6,0) I used Pythagoreans theorem and got a distance of 5
f) find the equation of the circle C' with center B and passing through A
since the circle equation is (x-h)^2 + (y-k)^2 = R^2 I just input everything I knew so far and got: (x-6)^2 + y^2 = 25
is all that correct? I know it's a lot but I appreciate the help!
The last question is:
g) find the coordinates of the intersection points of C and C'
a) Let a be the point (2,3). Compute the distance from Origin 0 to A
answer: a^2 + b^2 = c^2
3^2 + 2^2 = c^2
c=sqrt(13)
b) find the equation of circle C passing through point A
x^2 + y^2 = 13 -> since the center is (0,0), right?
c) find the equation of line D tangent to the circle C at point A
since the equation for line OA is y=3/2 x + 0 , I can use the negative inverse of the slope to get the slope of the tangent, right?
so I used y=-2/3 x +b and input the coordinates (2,3) to get b
3 = (-2/3)(2) + b
b = 4 , therefore the equation of the tangent is y=-2/3 x + 4 right?
d) line D meet Ox at point B. Find the coordinates of B.
This is where I'm a little confused. Does "Ox" mean the x-axis? That's what I went on so I just used the previous line equation and set y to zero:
0= -2/3 x + b
x = 6 therefore line D meets Ox when x=6 coordinates (6,0)
e) compute distance of AB
A(2,3) B(6,0) I used Pythagoreans theorem and got a distance of 5
f) find the equation of the circle C' with center B and passing through A
since the circle equation is (x-h)^2 + (y-k)^2 = R^2 I just input everything I knew so far and got: (x-6)^2 + y^2 = 25
is all that correct? I know it's a lot but I appreciate the help!
The last question is:
g) find the coordinates of the intersection points of C and C'
Answers
There are no human answers yet.
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.