How do I solve for lim h->0 (((a+h)^2 + 1)/(3(a+h)+7) - ((a^2 + 1)/3a + 7)) and then all divided by h?

The question was use the limit definition to find the derivative of f(x)= (x^2 + 1)/(3x + 7).

I tried solving what I did above, but had no luck. I used wolfram alpha to get my answer of (3(a^2) + 14a - 3)/((3a + 7)^2). Could someone please show me the steps to arrive at this answer?

1 answer

First of all, why did you switch from x to a ?

My first line ...
lim [ ((x+h)^2+1)/(3(x+h)+7) - (x^2 + 1)/(3x + 7) ] /h as h ---> 0
= lim [((3x+7)((x+h)^2 + 1) - (3x+3h+7)((x^2+1))/(((3x+3h+7)(3x+7))] / h

carefully expand the numerator, leave the bottom alone
Each term in the numerator WILL have a common factor of h, cancel it with the h at the bottom.
You will get the answer that your Wolfram link gave you.
Similar Questions
    1. answers icon 1 answer
  1. Combine like terms:-3x^2+2x-4x^2-9+6x-2x^2+8 Solve for x: 8x-11= -11x+18 Solve for x: -2(x-5)+7=z-8-5x Solve for x: (x-2)/5 -
    1. answers icon 8 answers
  2. Solve the indicated variable:1. Volume of a cone: solve for h: V=¨ir^2h/3 2. Temperature formula: solve for C: F=9/5C+32
    1. answers icon 1 answer
  3. Put in the correct orderSolve exponentiation. Solve multiplication and division. Solve operations within parentheses Solve
    1. answers icon 1 answer
more similar questions