Asked by CMM
An open box (has a bottom but no top) needs to be constructed which has a volume of 500 cu. in. The bottom of the box is to be a square. Let x be one of the sides of the bottom. Express the area of the four sides and bottom of box as a function of x alone. What value of x will make the total area of the 4 sides and the bottom of the box as small as possible? (that is, gives the box that uses the least amount of material to build and has a volume of 500).
Please help and explain. I have an exam shortly and a similar question will be on it.
Please help and explain. I have an exam shortly and a similar question will be on it.
Answers
Answered by
Reiny
If the base is x by x, let the height be y
Volume = (x^2)y
x^2y = 500
y = 500/x^2
surface area = x^2 + 4xy
= x^2 + 4x(500/x^2 = x^2 + 2000/x
d(surface area)/dx = 2x - 2000/x^2
= 0 for a max/min of surface area
2x - 2000/x^2 = 0
x^3 = 1000
x = 10
Volume = (x^2)y
x^2y = 500
y = 500/x^2
surface area = x^2 + 4xy
= x^2 + 4x(500/x^2 = x^2 + 2000/x
d(surface area)/dx = 2x - 2000/x^2
= 0 for a max/min of surface area
2x - 2000/x^2 = 0
x^3 = 1000
x = 10
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.