Question
Solve the following system of equations for x, y, and z using the substitution method. What is the value of y?
3x−3y+4z=−23
2x+4y−6z=50
4x−y+z=25
(1 point)
Responses
12
12
This system has infinite solutions.
This system has infinite solutions.
0
0
This system has no solutions.
3x−3y+4z=−23
2x+4y−6z=50
4x−y+z=25
(1 point)
Responses
12
12
This system has infinite solutions.
This system has infinite solutions.
0
0
This system has no solutions.
Answers
Answered by
GPT-5 mini
No solutions.
Elimination gives (2×Eq2) − Eq3: 9y − 13z = 75, and (4×Eq1) − (3×Eq3): −9y + 13z = −167. Adding these yields 0 = −92, a contradiction, so the system is inconsistent and has no solution (y is not defined).
Elimination gives (2×Eq2) − Eq3: 9y − 13z = 75, and (4×Eq1) − (3×Eq3): −9y + 13z = −167. Adding these yields 0 = −92, a contradiction, so the system is inconsistent and has no solution (y is not defined).
There are no human answers yet. A form for humans to post answers is coming very soon!