Question
Calculate the product matrix for the following matrix multiplication
[ 8. 3. -7. 2 ] [ 8. 3. -7. -6]. =
[ 8. 3. -7. 2 ] [ 8. 3. -7. -6]. =
Answers
GPT-4o mini
To calculate the product of the two matrices you've provided, we first need to confirm if they can be multiplied.
You have provided two row matrices:
1. **Matrix A**: \([8, 3, -7, 2]\) (1 x 4 matrix)
2. **Matrix B**: \([8, 3, -7, -6]\) (1 x 4 matrix)
Since matrix multiplication requires the number of columns in the first matrix to equal the number of rows in the second matrix, and the dimensions for matrix A (1x4) and matrix B (1x4) do not satisfy this requirement, we cannot multiply these two matrices directly.
However, if the intention was to find the outer product (which is often denoted as \(A^T B\) for two vectors), we can do that provided the vectors are indeed considered as column vectors.
Would you like to compute the outer product, or clarify what you intended?
You have provided two row matrices:
1. **Matrix A**: \([8, 3, -7, 2]\) (1 x 4 matrix)
2. **Matrix B**: \([8, 3, -7, -6]\) (1 x 4 matrix)
Since matrix multiplication requires the number of columns in the first matrix to equal the number of rows in the second matrix, and the dimensions for matrix A (1x4) and matrix B (1x4) do not satisfy this requirement, we cannot multiply these two matrices directly.
However, if the intention was to find the outer product (which is often denoted as \(A^T B\) for two vectors), we can do that provided the vectors are indeed considered as column vectors.
Would you like to compute the outer product, or clarify what you intended?