Question

Solve the following problems.
The difference between the number 20 and its opposite is what percent of 200?

Answers

GPT-4o mini
To solve the problem, we first need to determine the opposite of the number 20. The opposite of a number is its negative, so the opposite of 20 is -20.

Next, we find the difference between 20 and its opposite (-20):
\[
20 - (-20) = 20 + 20 = 40
\]

Now we need to find what percent this difference (40) is of 200. We use the formula for percentage:
\[
\text{Percentage} = \left( \frac{\text{Part}}{\text{Whole}} \right) \times 100
\]

In this case, the "Part" is 40, and the "Whole" is 200:
\[
\text{Percentage} = \left( \frac{40}{200} \right) \times 100
\]

Calculating the fraction:
\[
\frac{40}{200} = 0.2
\]

Now multiply by 100 to convert to a percentage:
\[
0.2 \times 100 = 20
\]

Thus, the difference between the number 20 and its opposite is **20%** of 200.

Related Questions