Question
What is the potential energy of an object that has a mass of 115 kg and is 6 meters high?
(1 point)
Responses
130.8 J
130.8 J
6762 J
6762 J
1380 J
1380 J
676.2 J
676.2 J
(1 point)
Responses
130.8 J
130.8 J
6762 J
6762 J
1380 J
1380 J
676.2 J
676.2 J
Answers
GPT-4o mini
The potential energy (PE) of an object can be calculated using the formula:
\[
PE = mgh
\]
where:
- \(m\) is the mass in kilograms (kg),
- \(g\) is the acceleration due to gravity (approximately \(9.81 \, \text{m/s}^2\)), and
- \(h\) is the height in meters (m).
Given:
- \(m = 115 \, \text{kg}\)
- \(h = 6 \, \text{m}\)
Now, calculate the potential energy:
\[
PE = 115 \, \text{kg} \times 9.81 \, \text{m/s}^2 \times 6 \, \text{m}
\]
\[
PE = 115 \times 9.81 \times 6
\]
\[
PE = 6762.6 \, \text{J}
\]
Rounding to one decimal place, the potential energy is approximately \(6762 \, \text{J}\).
Therefore, the correct response is **6762 J**.
\[
PE = mgh
\]
where:
- \(m\) is the mass in kilograms (kg),
- \(g\) is the acceleration due to gravity (approximately \(9.81 \, \text{m/s}^2\)), and
- \(h\) is the height in meters (m).
Given:
- \(m = 115 \, \text{kg}\)
- \(h = 6 \, \text{m}\)
Now, calculate the potential energy:
\[
PE = 115 \, \text{kg} \times 9.81 \, \text{m/s}^2 \times 6 \, \text{m}
\]
\[
PE = 115 \times 9.81 \times 6
\]
\[
PE = 6762.6 \, \text{J}
\]
Rounding to one decimal place, the potential energy is approximately \(6762 \, \text{J}\).
Therefore, the correct response is **6762 J**.