Let's break down the information given in the problem:
- On Monday, Mr. Roberts drove 42 miles.
- On Tuesday, Mr. Roberts drove 5 miles more than half the distance he drove on Monday.
First, we will calculate half the distance he drove on Monday:
\[ \text{Half of Monday's distance} = \frac{42}{2} = 21 \text{ miles} \]
Now, we'll add 5 miles to this half distance to find out how far he drove on Tuesday:
\[ \text{Distance driven on Tuesday} = 21 + 5 = 26 \text{ miles} \]
Now, let's analyze the equations you provided:
- (42 - 5) x 2 = 74 (This doesn't correspond to the problem)
- 42 - (5 x 2) = 32 (This doesn't correspond to the problem)
- (42 divide by 2) - 5 = 16 (This is not correct)
- (42 divide by 2) + 5 = 26 (This is correct)
The correct equation that represents the statement that Mr. Roberts drove 5 miles more than half of what he drove on Monday is:
\[ \left(\frac{42}{2}\right) + 5 = 26 \]
So, Mr. Roberts drove 26 miles on Tuesday.